

Wearable Medical Devices (WMDs)

Etienne Hirt, Michael Scheffler

hirt@art-of-technology.ch Art of Technology AG, Zurich, Switzerland

Who is Art of Technology

- Has its roots in the EU project EUROPRACTICE (1995), whose purpose was to disseminate the HDP/MCM technology in Europe. **EUROPRACTICE**
- Key personel experienced in miniaturization of electronic systems since 1996.
- Company was founded in 1999 as ETH spin-off.
- 80% commercial contracts and 20% EU funded projects.
- Successful work assignments in the
 - Medical, Aerospace, Fixed and Wireless Communications, Sensor Technology, Computer Managements See 3 and many other industries

2000 / ISO 13kg

- Privately held company with strong partnerships.
- Certified QS-System: ISO9001:2000 and ISO 13485:2000 (medical)

The Services of Art of Technology

Art of Technology offers a turn-key service to transform customer ideas into products:

- Development of ideas and solutions
- Basic research
- Feasibility studies & technology evaluation
- Component Procurement
- System design incl. firmware
- Layout & production preparation
- Evaluation of manufacturers and accompanying of the production
- Test & qualification

... using HDP/MCM Miniaturization Technologies!

Agenda

- High Density Packaging
- Medical Electronic Devices
 - Classification
 - New application areas enabled by HDP/MCM
- (Wrist) Wearable Medical Devices (WMDs)
 - Market requirements and design challenges
 - Application examples
 - Design conclusions
- Biocompatibility
- Implants
 - Even smaller than WMDs
 - Requirements & technologies
- Summary

What is High Density Packaging (HDP/MCM)?

HDP-Modules are built using

- Bare dies (un-housed ICs)
- μ-BGAs or Chip-Size Packages (CSPs)
- Highly integrated circuit boards (substrates)
- Different assembly technologies

Picture: source FhG-IZM

An HDP-Module is

- either a complete system/device
- or part of a system packed in a PGA or a BGA and then mounted on a PCB

Assembly Technologies

Wire bonding

Tape Automated Bonding

Flip Chip

Substrate Technologies

Laminate (PCB/SBU/Micro Via)

Ceramic (Co-fired / Hybrid)

Thin film (on Silicon, Ceramic, Glass, Laminate)

Sample Miniaturization Technologies

Miniaturization of electronic systems through High Density Packaging (HDP/MCM)

COB
Chip on Board

Accu Charger f. Mobile Phone

Pentium Core-Module

MCP

Multi Chip Package

Why Choose HDP/MCM?

Advantages of the HDP/MCM-Technologies:

- Shorter development times and overall faster time to market than an ASIC
- Increase of functionality while reducing size and weight
- Increased performance
- Reduced power consumption
- Cost reduction at system level
- Easier protection against EMC and EMI
- High reliability
- Increased modularity and reusability of subsystems

Where to use HDP/MCM?

HDP/MCM Application areas include

- All applications where many features need to be integrated into a small, lightweight, lowpower – often mobile or wearable – device.
- Applications in mixed-signal electronic systems as an alternative to a costly, risky and time-consuming ASIC design.
- If you already have designed ASICs, HDP/MCM will allow you to efficiently and inexpensively use them to offer a wide range of product variations.
- Applications to be used under extreme environmental conditions such as temperature, electromagnetic interference etc.

Ranking Medical Electronic Devices

Laboratory/Hospital equipment

- Large-scale, expensive equipment
- Used in leading-edge diagnosis and patient care
- Not covered in this talk

- Truly portable medical devices
- Miniaturization of laboratory equipment through HDP/MCM
- Patients become independent of location (hospital) and professional care (physician)

Implants

- Smaller but more complex
- Further improve patients' comfort

New Wrist Wearable Medical Devices (WMDs)

New Applications: Not only a transient phase from laboratory equipment to implants: they made a functional quality leap from simple measuring aids (replacing physicians) to complex services including diagnosis support.

New Technologies: Fostered by new sensor concepts, miniaturized signal processing and communication capabilities.

New Players: Nowadays also SMEs can develop innovative WMDs.

Market Requirements & Challenges for WMDs

Small and lightweight

- Small enough to fit around the wrist
- Shall be unobtrusive, and not necessarily look like a medical device

Low power

- Stand-alone power supply of minimum 15 hours (1 working day).
- Low power consumption (e.g. HRM): Primary battery
- High power consumption: rechargeable (enforces connectors, battery protection circuit, massive regulatory issues)

Life cycle and housing

- MTTF 4 years, "no consumer device"
- Shock proof, at least splash water resistant (IP65)
- Biocompatible with skin contact (FDA approval)

Requirements & Challenges for WMDs II

Interconnection

- Connectors complicate mechanical design and production
- Wireless solutions demand a higher power budget

(Novel) sensors

- Cannot be easily integrated into standard electronics and housings
- Biocompatibility issues can influence the measurement path
- Analog control and signal processing cannot be easily miniaturized.

There is no ultimate solution to be presented, every device means a carefully evaluated optimum!

Application example AMON*)

Project's Goal (30 months):

- Wrist wearable monitoring device for heart patients
- Bi-directional link to telemedicine center, online diagnosis

Variables monitored:

- Body temperature
- Blood pressure
- Blood oxygen
- ECG
- Heart rate
- Heart rythm

additionnal Features:

- Emergency button
- Mobile phone

AMON - Technology

- New functional SMD prototype produced
- Integration of standard building blocks (SPO2, GSM) to achieve functional validation

Future revisions could concentrate on block integration and height reduction using HDP

AMON – The new functional Prototype

Application example Pendra®

- Wrist wearable novel non-invasive glucose monitoring device (obtained CE mark in May 2003)
- Developed jointly with Pendragon Medical, Switzerland from Research to Series Production

- Consists of:
 - Digital control board with User Interface
 - Battery
 - Analog measurement electronics
 - Sensor

Pendra® - Technologies

Prototype P1: SMD	Prototype P2: COB	PreSeries: COB
Contains:	Contains:	Contains:
-uC	-Battery Protection	-Additional
-2 Data memories	-4 Data memories	Components as COB
-Power converter	-Display controller	-More functionality on less space
	-Backlight & Buzzer	
	-COB	-Improved connector
	-uC, Battery Protection, memory	solution, reduced height
		(but case is rounded)
-Board: 45 x 50 mm ²	-Board: 35.5 x 41 mm ²	-Board: 33.1 x 42 mm ²
-Case: 60 x 45 x 12 mm ³	-Case: 45 x 45 x 12 mm ³	-Case: 51 x 38 x 13 mm ³

Pendra® - Size comparison

Size of the Control Board (left P2, right P1)

P1

P2 Outer enclosures

PreSeries

Pendra® - Results

Pendra® - HDP Technology

Other Wearable Approach

QBIC Belt Integrated Computer j/l

Applications

- Wearable PC
- Central Data collection and Processing
- Many other

Designed to Wear

- Fully integrated in a Belt
- Processor, Wireless Communication and Memory in the Buckle
- I/O-Plugs and Battery integrated in the Belt

Other Wearable Approach

QBIC Belt Integrated Computer

Key Features

- Low Power
- Small Size
- Flex Connection
- Standard Interfaces
 - USB, RS-232, RF VGA, Bluetooth

Other Wearable Approach

QBIC Belt Integrated Computer

Technologies

- Chip Scale and Chip Size Packages (CSP)
- HDP Substrate 8 Layers featuring four Microvia Layers (Laser)
- Star-Flex Print for Extension Board

Conclusions WMDs

Functional prototypes should already be (wrist) wearable

- Makes prototypes more complicated and requires close cooperation with mechanical engineering.
- But helps testing user interaction (esp. for sensors) and minimizes unexpected setbacks when moving to the targeted form factor.

"Building block strategy" (AMON)

- Looks favorable: existing submodules can be relied on (e.g. for communication).
- Drawback: double work for later superfluous interfaces (cables) and mechanics, SW integration could become a serious inconvenience.
- Although rather bulky, it works on standard PCB/SMD technology.

Complete custom development (Pendra®)

- More effort is needed in the first stages.
- But all pieces fit neatly together, there is no double HW.
- HDP/MCM is a must when targeting a "marketable" form.

Conclusions WMDs (II)

HDP/MCM Advantages

- Size reduction (smaller footprint)
- Low-profile (1-1.5 mm per layer, using Bare Dies, other substrates instead of 2-2.5 mm)
- Less weight (less packaging overhead)

Further Challenges

- Sensors are often not standard for wrist portability, further research is needed.
- Skin-contact effects must satisfy regulatory (CE, FDA) requirements.
- How to interface the device, when downloading data or charging the batteries?
- WMDs can be built with standard electronics assembly technologies, (except for sensors), and mechanics is the most complex aspect.

Biocompatibility

Requirements (ISO 10993)

- Stable in physiological environment, no degradation over time
- Protecting electronics against body fluids and humidity
- Non-toxic or isolating toxic materials
- Smooth surface, not inducing traumas, must not brittle, light-weight, flexible, must conform the natural soft tissue

Housing (hermetic)

- Metal (Steel, Titanium, Platinum)
- Ceramics or Glass

Coatings

- Silicone (very flexible, but not long-lasting)
- Parylene (some μm), tight against body fluids and humidity

Molded plastics

- Macrolone (robust and FDA approved)
- Polystyrene, PMMA, PEEK, Polycarbonate and Polypropylene, ABS

Design Challenges for Implants

Minimum size:

An implant is still an "artificial element" in the body

Minimal power consumption

- Target is primary battery, non rechargeable, but battery replacement means surgery!
- The future: charging via inductive coupling

Highly reliable

 Implants are supporting vital functions, again replacement means surgery

Flexible

 Electronics must meet environmental requirements, and not vice versa

Design Challenges for Implants (II)

Encapsulation

- Biocompatible, FDA approved
- Protecting the electronics against aggressive fluids and humidity
- Mostly hermetic sealing
- But still enabling communication to externals (Data downloads)

Technology

 Requires special encapsulation, even aggressive electronics build up/packaging for miniaturization → HDP/MCM

Example Nerve Cuff Electrode FhG-IBMT*)

- 18 channel electrode for recording neural information
 - Combination of Si and Thinfilm PI

to 4-

Multiplexer

- Thinfilm PI-PCB
- 3 dies, 5 SMDs
- Silicone encapsulation cable
- Reduced # cables to 4

2 analog multiplexers

> Pics courtesy Fraunhofer-Institut für Biomedizinische Technik

Nerve Cuff Electrode - Technology

Flex Substrate

- Hardened Polyimid **PYRALIN PI 2611**
- Ti-Pt Metalization
- Line width $\geq 5 \mu m$
- Pitch ≥ 10 µm
- Bend radius of the substrate: ≥ 100 µm

Microflex connection

- Biocompatible
- 100 µm pitch possible

Rasterelektronische Aufnahme eines Kontaktarrays

Skizze einer Mikroflexverbindung

Example Pace Maker

- Standard technology
 - Hybrid SMD
 - Possibly wire bond
- Largest part: Battery

Standard pace maker from Biotronik

Pic © Biotronik

- Reducing the electronics:
 - Wafer-level CSP
 - SMT Assembly w/ Underfill
 - 2-layer rigid-flex (Dycostrate)
 - Metal casing

Test development from FhG-IZM, MSE, Dyconex

Conclusions Implants

HDP/MCM advantages:

- Extreme miniaturization enables an improved implant technology.
- Simplifies encapsulation by
 - Reducing volume
 - Being directly biocompatible
- Improves biocompatibility
- But special technologies require special regulatory approval

Important points

- Reliability increases (less solder connections)
- But needs to be proven for every new build-up (no verified standards).
- Power supply: Size (autonomous, non-rechargeable, long lasting battery) vs. Safety (small, short-range, rechargeable, but requiring reliable users/charging procedures)

Summary

- Demonstrated that WMDs open new markets
- Detailed the design challenges for WMDs
- Presented two application examples for WMDs:
 - HDP/MCM reduces volume and weight, thus simplifying housing/encapsulation
 - HDP/MCM prototypes seem to be more complicated, but reduce double design efforts and enable a faster prototype-product transition
 - Additional HDP/MCM production cost is manifold offset by the design and regulatory approval effort
 - Packaging has to ensure biocompatibility in all electronics-human interfaces:

Encapsulation, Housing, Sensors

Thank you for your attention!

hirt@art-of-technology.ch