

Today's application areas: Mixed-Signal

- Medical
 - Pacemakers, Internal Defibrillators, Hearing Aids, Drug Dispensers, Heart Rate Monitors, Flow meters
- Consumer
 - Handhelds (Cell Phones, PDAs), Security Sensors (GPS locator in lifejacket), Toys, Remote Controls Cameras, Sporting Gear (Body-function Monitors), GPS devices, Sensor telemetry through GSM
- Industrial/Aerospace/Automotive
 - Automotive parts (GPS, toll tags), Wireless Systems
 Pressure & Flow Meters, Security Systems, Industrial
 Process Control (Temp., Pressure Sensor), Laser Barcode
 Scanners, Intelligent Sensors, Communication

Mixed Signal: Not easy to integrate...

- Low noise requirements in sensor applications
- · High power needed to drive motors or heavy loads
- Optical coupling for isolation
- When only a certain volume and limited design time is available
- Incompatible technologies needed in a single device
 - Communications: GaAs for serial data, Si CMOS for parallel logic
 - RF applications: SiGe for the RF, Si CMOS for the rest
 - If you are using optical communications or interconnects
 - Lasers and LEDs are made from III-V and II-VI alloys and cannot be made from Si
 - If you need opto-isolation of some inputs
- → High Density Packaging (HDP/MCM) helps in solving these issues, thus achieving system objectives

Module Substrate Alternatives

- Many alternative substrate technologies:
 - PCBs (e.g. Reinforced Epoxy FR4/5, BT)
 - · Poor thermal dissipation
 - Line width 75-750 microns, pitch 100-1000 microns
 - Cost per cm² low
 - Ceramics (e.g. Al₂O₃, AIN)
 - · High thermal dissipation
 - Line width 90-125 microns, pitch 125-375 microns
 - Cost per cm² moderate
 - Thinfilm on various bases (e.g. Cu/BCB on Glass)
 - · Thermal dissipation high
 - Line width 15 microns, pitch 25 microns
 - Cost per cm² high

ART OF HECHNOLOG

HDP/MCM is **NOT** a New Idea

IBM "SLT" Technology 1963

- Discrete components mounted without encapsulation onto a ceramic PCB ½ inch square by means of solder bumps
- In a 1971 internal IBM study "SLT" was shown to have been significantly more costeffective than early IC technology.
- Since 1963 IC technology has developed a great deal... but so has packaging technology!

An IBM Internal study in 1971 concluded that SLT was:

"The major technological factor in IBM's success in the 1960s"

Advantages of HDP/MCM cont'd.

- Better protection against EMC and EMI
 - Shorter Connections between IC's (less "antenna" effect)
 - Smaller areas to shield
- Increased Modularity and Reusability of subsystems
- High Reliability
 - Fewer solder joints in package
 - Smaller modules are easier to protect from harsh environments
 - Smaller (lighter) modules less prone to damage from physical shock (dropping etc.)

ART OF HECHNOLOGY

Advantages of HDP/MCM over ASICs

- Faster time-to-market than ASIC
- Investment cost for HDP/MCM is much less
- HDP/MCM modules can include
 - RF Receivers or Transmitters
 - Sensors operating on very low currents (sensitive to noise)
 - Power control or management devices (Zeners, Diodes etc.)
 - Large Memories
- Simplify ASIC Design
 - Sometimes routing signals in substrate can substitute for long heavily RC loaded on-chip lines.
 - Memories and other cores can be added as off-the shelf components instead of integrating into a large ASIC.
- When you need very high performance...
 - · Used by IBM (and others) for high-end multiprocessors

DBS Satellite Multiswitch - Technology

- AoT development for Hirschmann Electronics GmbH&Co KG, Germany
- Thin film on Ceramic, Termination resistors and coupling capacitors integrated
- Switch for satellite receiver (7 Chips)

9:4 Switch Module

1 st level interconnect	Wire bond, cap & gel	Number Layers	2	Designrules	40/60/60
2 nd level interconnect	Wire bond to BGA carrier	Size Substrate	17 x 17 mm ²	Specialities	Integrated Passives

HDP/MCM Example Advantages

Personal Health Monitor

- Standard Components for uC and Memory
 - Mixed with Analog Processing ASIC to minimize component count and minimize noise sensitivity
 - Reduced volume and power consumption

GPS Receiver

- High Performance Receiver with signal processing unit
- Provides a complete (sub) system working @ 1.575GHz
- · Minimized volume, easy to design in

Antenna Switch

- Combined existing ASICs to a larger component (9 instead of 5 inputs)
 - Avoid new ASIC development
 - ASICs can be used for 5 to 4 and 9 to 4 switches
- Added intelligence to the component (Analog and Digital Protocol instead of Analog only)

