Innovative Electronics

Design and Development Services
Company Overview

- **Established 1999**
 - spin-off (ETH Zurich)
 - privately owned (100%)
 - 13 employees

- **Electronic design, development & miniaturisation**
 - medical devices and active implants
 - data communication & security electronics
 - space-flight applications and other extreme environments where exceptional reliability is required

- **Quality**
 - ISO9001 and ISO13485 (medical)
 - development according to GAMP
Core Expertise

- System miniaturisation
- Analogue and digital electronics
- Low power electronics
- Power management
- Cryptography and data security
- High and low level embedded software
- High reliability
- Harsh environments
- Standard and special technologies
 - SMD, HDP, 3D-MID
 - chip size packages, chip-on-chip
 - bare dies with wire bonding
 - flip-chip, TAB
Design & Consultancy Services

- Research & technology studies
- Review services
 - design review
 - second opinion
 - troubleshooting
- HW and SW system development
- Production set-up and support
- Support for start-up companies
- Support for universities
Typical Applications

Data Communications & Data Security
Industrial
Medical Devices & Active Implants
Optoelectronics
Space
High Reliability & Harsh Environments
Data Communications

- **Wireless communication**
 - ISM 433 MHz, 868 MHz 2.4 & 5 GHz
 - GSM, GPRS, LTE
 - Bluetooth, Bluetooth LE
 - RFID, NFC, WLAN
 - Satellite up to 12 GHz, 77 GHz (terrestrial)

- **Wired Communication**
 - Data over Supply (DoS)
 - Ethernet, USB
 - Field-Bus, Profi-Bus, M-Bus, HART
Data Security

- Uni-directional Network Link
 - authentication, authorisation
 - privacy (encryption)

- Secure USB Stick
 - encryption on stick
 - smart card and password
 - small embedded processor
 - strong encryption algorithm
Industrial

- General purpose voltage amplifier
- Optical temperature measurement
- High EMV environment
- Power modules
- Solderable Memory Module (SMM)
 - high vibration environment
Industrial (Internet of Things)

- Optical reader for water meter
 - IP65 water meter with 2 cameras
 - RFID-Reader for Label Data

- Washing machine meter-switch
 - user interface via card reader
 - switches meter to correct user meter
Medical Devices

- Medical camera system
 - high resolution digital imaging with illumination

- Wearable device(s)
 - pulse, skin temperature, ECG
 - movement (and helplessness)
 - blood glucose, blood pressure, SpO2
 - wireless data transfer, alarm button, GSM
Active Medical Implants

- **Ascites suction pump**
 - pressure, temperature & motion sensors
 - wireless data transfer & re-charging
 - fully sterilisable
 - <100 grams

- **Long Bone Lengthening Device**
 - fully encapsulated motorised part
 - totally biocompatible mobile systems
 - bi-directional transmission of data
 - wireless power transfer from control box to implant
Optoelectronics

- 3D-MID camera system

- Industrial
 - IP65 water meter, 2 cameras
 - RFID reader for label data

- Consumer
 - 360° panoramic ball camera
 - 36 cameras, simultaneous trigger
Space: **NETLANDER™**

- **Mars Landing Probe (2001)**
 - Network of four identical landers performing simultaneous measurements to study the internal structure of Mars, its sub-surface and its atmosphere
 - Two SEISmometers to study tremors on Mars and locate reservoirs of water or ice
 - very broad band (2-axis), short period (3-axis)
Space: NETLANDER™ - SEIS

- SEISmometer Electronics
 - Feasibility study and technology evaluation of main and auxiliary controllers and motor drive electronics

- SEIS-MC and SEIS-AC modules
 - system analysis & critical properties review
 - evaluate high density packaging technologies
 - identify ASIC technology for (digital) circuits
 - review miniaturisation potential
 - check availability of components
 - analyse FM development & qualification costs
Space: POLAR (launched 15th September 2016)

- Detection of Gamma Ray Bursts (GRBs)
- Highly sensitive detector using Compton Scattering Effect to measure polarisation of incoming photons
- Concept to FM (2008 - 2014)
 - Swiss experiment (ISDC, Univ. of Geneva)
 - scheduled for two to three years operation
 - only non-Chinese experiment on Tiangong-2
Space: POLAR (launched 15th September 2016)

- Feasibility Study
 - evaluate design of front-end electronics
 - identify design errors or weaknesses
 - recommendations to increase reliability

- High Voltage Power Supply (HVPS)
 - system reverse engineering & re-design
 - design, development and manufacture
 - 26 settable power sources (on 3 prints)
 - 300 - 500 components per board

- Low Voltage Power Supply (LVPS)
 - feasibility study, design, development and manufacture
 - 82 switchable power sources (2 prints)
 - 800 - 1’300 components per board
Space: POLAR (launched 15th September 2016)
Space: STIX (launch 2019)

- **Solar Orbiter**
 - explore how sun creates & influences heliosphere
 - understand risks caused by space weather

- **Spectrometer Telescope Imaging X-rays**
 - Swiss experiment (FHNW)
 - create images & spectra
 - thermal & non-thermal x-rays
 - time, location, intensity & spectra
 - accelerated electrons
 - high temperature plasma (>10 million degrees)
Space: STIX (launch 2019)
Space: 3D-MID4space (ARTES 5.1)

- Characterise suitability of 3D-MID technologies, manufacturing techniques, processes and materials for space telecom applications... target TRL5

- Identify critical issues, recommendations, or modifications that may be required, lessons learned and conclusions

- Propose possible follow on activities and road map to increase TRL
Space: 3D-MID4space (ARTES 5.1)

- **High functional integration density**
 - mechanical, electronic and thermal functions
 - optimal space utilisation: miniaturisation, significant weight savings
 - defined angles between components, stacking and precision placement of components
 - high level of precision into the ultra-fine conductor range
 - reduction of assemblies through reduction of conventional interconnect devices (e.g., strip conductors directly in the enclosure)

- **MID designs allow more efficient AIT**
 - rationalisation and overall system simplification via reduction of process steps, number of parts and mounting time
 - increase in manufacturing reliability due to fewer mechanical parts and processes
 - full three-dimensionality with through plating allows complex 3-dimensional interconnect devices
 - production with high variance and short changeover times, layout change of conductor network needs no tools, just a change of CAD layout data
High Reliability & Harsh Environments

Underwater

On top of mountains

In space

Inside the human body